National Research Council of Italy

Institute of Biosciences and Bioresources

Effect of Habitat Fragmentation on the Genetic Diversity and Structure of Peripheral Populations of Beech in Central Italy

Leonardi S, Piovani P, Scalfi M, Piotti A, Giannini R, Menozzi P

Journal of Heredity 103: 408-417. [ISSN: 0022-1503]
doi: 10.1093/jhered/ess004

Fragmentation can affect the demographic and genetic structure of populations near the boundary of their biogeographic range. Higher genetic differentiation among populations coupled with lower level of within-population variability is expected as a consequence of reduced population size and isolation. The effects of these 2 factors have been rarely disentangled. Given their high gene flow, anemophilous forest trees should be more affected, in terms of loss of genetic diversity, by small population size rather than geographic isolation alone. We studied the impact of distance from the main range (a measure of isolation) and reduced population size on the within-population and among population components of genetic variability. We assayed 11 isozyme loci in a total of 856 individuals in 27 marginal populations of European beech (Fagus sylvatica L.) in Central Italy. Populations were divided into 3 groups with an increasing level of fragmentation. In the most fragmented group, the within-population genetic variability was slightly smaller and the among population differentiation significantly larger than in the other 2 groups. Isolation-by-distance was lost when only pairs of populations involving at least one from the most fragmented group were considered and maintained in the other groups. These results support the role of random genetic drift having a larger impact on the most fragmented group, whereas gene flow seems to balance genetic drift in the 2 less fragmented ones. Given that average distance from the main range is not different between the intermediate and the most fragmented group, but average population size is smaller, we can conclude that gene flow is effective, even at relatively long distances, in balancing the effect of fragmentation if population size is not too small


IBBR Authors

Other IBBR Authors