National Research Council of Italy

Institute of Biosciences and BioResources

DISBA logo CNR logo
IBBR publication #1416

Crystal structure of Mycobacterium tuberculosis O6-methylguanine-DNA methyltransferase protein clusters assembled on to damaged DNA

Miggiano R, Perugino G, Ciaramella M, Serpe M, Rejman D, Pav O, Pohl R, Garavaglia S, Lahiri S, Rizzi M, Rossi F

Biochemical Journal 473 (2): 123-133. (2016)
doi: 10.1042/BJ20150833

Mycobacterium tuberculosis O(6)-methylguanine-DNA methyltransferase (MtOGT) contributes to protect the bacterial GC-rich genome against the pro-mutagenic potential of O(6)-methylated guanine in DNA. Several strains of M. tuberculosis found worldwide encode a point-mutated O(6)-methylguanine-DNA methyltransferase (OGT) variant (MtOGT-R37L), which displays an arginine-to-leucine substitution at position 37 of the poorly functionally characterized N-terminal domain of the protein. Although the impact of this mutation on the MtOGT activity has not yet been proved invivo, we previously demonstrated that a recombinant MtOGT-R37L variant performs a suboptimal alkylated-DNA repair invitro, suggesting a direct role for the Arg(37)-bearing region in catalysis. The crystal structure of MtOGT complexed with modified DNA solved in the present study reveals details of the protein-protein and protein-DNA interactions occurring during alkylated-DNA binding, and the protein capability also to host unmodified bases inside the active site, in a fully extrahelical conformation. Our data provide the first experimental picture at the atomic level of a possible mode of assembling three adjacent MtOGT monomers on the same monoalkylated dsDNA molecule, and disclose the conformational flexibility of discrete regions of MtOGT, including the Arg(37)-bearing random coil. This peculiar structural plasticity of MtOGT could be instrumental to proper protein clustering at damaged DNA sites, as well as to protein-DNA complexes disassembling on repair.

IBBR Authors:
Actions
Select by Year
Select by Type
Select by Author
*
*
*
*
Istituto di Bioscienze e Biorisorse (IBBR/CNR)
Via G. Amendola 165/A, I-70126 Bari (Italy)
Copyright © 2012-2024. All Rights Reserved.